Lecture 18

In this lecture, we'll prove various properties of isomorphisms and homomorphisms. We'll also study about automorphisms of a group.

(moposition 1 Let
$$g: G \to \overline{G}$$
 be an isomorphism.
Then the following hold:-
1) $g(e) = \overline{e}$, \overline{e} is the identity of \overline{G} .
2) For a ∈ G, $g(a^{-1}) = [g(a)]^{-1}$, i.e., g takes
inverse of an element to the inverse of the
image.
3) $\forall n \in \mathbb{Z}$, $a \in G$, $g(a^n) = [g(a)]^n$.
4) G is abelian $d=0$ $g(G)=\overline{G}$ is abelian.
5) G is eyelic $d=0$ \overline{G} is cyclic. Moreover, in $\overline{G} = \langle g(a) \rangle$.

Proof
1) Since
$$g: G \rightarrow G$$
 is an isomorphism,
 $g(e) = g(e \cdot e) = g(e) \cdot g(e) - 0$
Also, since $g(e) \in \overline{G}$ and \overline{e} is the identity of
 \overline{G} so
 $g(e) = g(e) \cdot \overline{e} - 2$
from (1) and (2), use get
 $g(e) \cdot \overline{e} = g(e) \cdot g(e)$, so by concellation laws,
 $g(e) = \overline{e}$.

2) For
$$a \in G$$
,
 $aa^{-1} = e = p \quad g(aa^{-1}) = g(a) \cdot g(a^{-1}) = g(e) = \overline{e}$
 $= p \quad [g(a)]^{-1} = g(a^{-1})$

3) Just follows from the definition of an isomorph--ism.

4) We'll just prove one direction as the other
clirection follows from 7).
het G be abelian. Pick x, y ∈ G. Since g is onto,
∃ Q, b ∈ G s.t. g(Q) = x
g(b) = y
so x.y = g(Q).g(b) = g(Qb) = g(bQ) = g(b).g(d)
= y.x

Let $x \in G$. Since g is onto, \exists be $G = s \cdot t \cdot$ $g(b) = x \cdot But \ G = \langle a \rangle = 0 \ b = a^n, n \in \mathbb{Z}.$ So, $g(a^n) = x \cdot From \quad \exists), we get$ $g(a^n) = [g(a)]^n = x = 0 \ \overline{G} = \langle g(a) \rangle.$

6) Let $a \in G_{i}$ and $ord(a) = m \cdot Then a^{n} = e$. We know then, $\vec{e} = \mathcal{Y}(e) = \mathcal{Y}(a^{n}) = \mathbb{E}\mathcal{Y}(a) \mathbb{J}^{n}$ so, $ord(\mathcal{Y}(a))|n$. If $ord(\mathcal{Y}(a)) = R \implies \mathcal{Y}(a)^{R} = \vec{e}$ $=\mathcal{P} \quad \mathcal{Y}(a^{R}) = \vec{e} = \mathcal{Y}(e)$ Since, \mathcal{Y} is one-one $\implies a^{R} = e \implies n|R$ so m|R and $R|n \implies R = n$ and hence $ord(\mathcal{Y}(e)) = n$.

F). g is a bijection, so g⁻¹: G → G is a bijection. Let x, y ∈ G. Then ∃ Q, b ∈ G sot.
g(a)=x and g(b)=y.

So, $g^{-1}(x,y) = g^{-1}(g(a), g(b)) = g^{-1}(g(ab))$ = $ab = g^{-1}(x), g^{-1}(y)$ So, g^{-1} is a homomorphism as well.

8) If b∈G is a solution of x^k=a, i.e., b^k=a
then 𝔅(b) is a solution of x^k=𝔅(a).
So # of solutions in G ≤ # of solutions in G
But we can do the same thing with 𝔅⁻¹:G=G
so # of solutions in G ≤ # of solutions in G
so # of solutions in G ≤ # of solutions in G

17

So with the help of the above properties, we can tell when two groups are not isomorphic.

e.g. Consider
$$U(10)$$
 and $U(12)$.
 $U(10) = \{1, 3, 7, 9\}$
 $U(12) = \{1, 5, 7, 11\}$
We saw that $U(10) \cong \mathbb{Z}_4$. Is $U(10) \cong U(12)$?
Note that it's not hand to come up us/a
bijection between $U(10)$ and $U(12)$. So all we need
to check is that whether there is a homomorphism
b/us them.
Note that $U(10) = \langle 3 \rangle$.
However, the orders of elements in $U(12)$ are
 $1 - order 1$
 $5 - order 2$
 $7 - order 2$
 $1 - order 2$
 $2 - order 2$
 $3 - 0rder 2$
 $3 - 0rder 2$
 $3 - 0rder 2$
 $3 - 0rder 2$
 $4 - 0rder 2$
 $5 - 0rder 3$
 $5 - 0rder 5$
 $5 - 0rder 5$
 $10 - 0rder 2$
 $5 - 0rder 5$
 $10 - 0rder 5$
 1

e.g. to
$$(\mathbb{C}^*, x) \cong (\mathbb{R}^*, x)$$

where $\mathbb{C}^* = \{ x \in \mathbb{C} \mid x \neq 0 \}$
 $\mathbb{R}^* = \{ x \in \mathbb{R} \mid x \neq 0 \}$
Note that $\tilde{g} = \mathcal{G}^* \longrightarrow \mathbb{R}^*$ is an isomorphi-
-sm, then $\mathcal{G}(D=1 \text{ as } 1 \text{ is the identity in both}$
 $\mathbb{C}^* \text{ and } \mathbb{R}^*$.
Let's look at the equation $x^4 = 1$. In \mathbb{C}^* it has
4 solutions : $1, -1, i, -i$
In \mathbb{R}^* , the equation $x^4 = \mathcal{G}(D=1 \text{ has only two})$
solutions : $1, -1$
So from 8) $(\mathbb{C}^*, x) \not = (\mathbb{R}^*, x)$ [mot isomorphic]

Automorphisms

There are some isomorphisms which are very impor--tant and hence must be discussed separately.

- Def?: Let G be a group. An isomorphism of G onto itself is called on automorphism.
- e.g. 1) The identity map $I: G \rightarrow G$ is clearly an automorphism. 2) Consider $\varphi: (C, +) \rightarrow (C, +)$ given by $\varphi(a+ib) = a-ib$ This is an automorphism.

Suppose G is a group. Is there any other autom-- or phism of G apart from the identity?

Defⁿ (Inner automorphism induced by a)
het G be a group and
$$a \in G$$
. The map
 $\mathcal{G}_a : G \rightarrow G$ given by $\mathcal{G}_a(g) = aga^{-1}$ is an
automorphism of G called the inner automorphism

of
$$G$$
 induced by a .
Check that G_a is a bijection.
To see that G_a is a homomorphism :- het $g,h \in G$,
then

$$g_a(g,h) = agha^{-1} = aga^{-1}aha^{-1}$$

= $g_a(g) \cdot g_a(h)$

Thus there are many automorphism of a group. Note that :- $\mathcal{G}_{e}(g) = ege^{-1} = g$ So, $\mathcal{G}_{e} = I$. Can $\mathcal{G}_{a} = I$ for any $a \in G$, $a \neq e^{2}$ We'll see the answer to this question after the First Somosphism Theorem.

Theorem 1 Let $Aut(G) = \{ \mathcal{G} : G \rightarrow G \mid Q \text{ is an isomor-} - \text{phism } \{ be the set of automorphism of G. Then Aut(G) is a group with the operation "o" which <math>\mathcal{Q}$

composition of functions. If Inn (G) denote the set of inner automorphisms of G, then Inn (G) A Aut (G), i.e. Inn (G) is a mormal subgroup of Aut (G). Proof: - The fact that Aut (G) is a group and Inn (a) < Aut (a) are left as exercises. To prove Inn (G) <1 Aut (G), we use the normal subgroup test. Let y & Aut (G) and fa & Inn (G) for some af G. Claim: - $g f_a g^{-1} \in Inn(G)$. So we want to prove that I b ∈ G s.t. 9 fa 9 = fb for that b. Let ge G. Then $g f_{g} g^{-1}(q) = g(f_{g} (g^{-1}(q)))$ = y (a -' (g) a) (by the def" of Ja) = $g(a^{-1}).gg^{-1}(g).g(a)$

=
$$g(a)^{-1}g \cdot g(a)$$

So from this we see that if we choose
 $b = g(a)$, then
 $gf_a g^{-1} = b^{-1}g b = f_b \in Inn(G)$.
Hence, $Inn(G) \triangleleft Aut(G)$.

In the next lecture we'll compute Aut (G) and Im (G) for specific groups and then proceed to under homomorphisms.

o _____ x _____ o